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Effects of symmetries on quantum fidelity decay
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We explore the effect of a system’s symmetries on fidelity decay behavior. Chaoslike exponential fidelity
decay behavior occurs in nonchaotic systems when the system possesses symmetries and the applied pertur-
bation is not tied to a classical parameter. Similar systems without symmetries exhibit faster-than-exponential
decay under the same type of perturbation. This counterintuitive result, that extra symmetries cause the system
to behave in a chaotic fashion, may have important ramifications for quantum-error correction.
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Fidelity decay as a possible signature of quantum chaos =2, (2)
was reported by Perg4,2] while exploring irreversibility in o
guantum mechanical systems. Though the overlap betweethereN2=N"1ZN\Z andN is the Hilbert space dimension.
two initial states undergoing equivalent evolution remains Fidelity decay is related by a Fourier transform to the
constant with time, it decreases with time if the Hamiltonianlocal density of stateLDOS) [3,18] 7(A¢)=|(vm|v )%,
affecting one of the systems is sightly perturbed. The behawhere A¢=¢,,— ¢;, is the difference between unperturbed
ior of the decrease in overlap, or fidelity, depends on whetheand perturbed eigenangles given by the eigenvalue equa-
the evolution is the quantum analog of a chaotic or nonchations: U|v ) =exp(~i ¢y |[vm andU,lv)y=exp—i¢))|vy). The
otic classical system. LDOS provides a measure of how local is the perturbation.
Further explorations have distinguished realms of fidelityFor complex systems the LDOS is typically Lorentz[ds)],
decay behavior based on the chaoticity of the correspondinghe perturbation transfers probability to the far reaches of the
classical system, perturbation strength and type, and the ingystem basis. The Lorentzian widthgives the exponential
tial system state. Weak perturbations of the Hamiltonianchaotic fidelity decay rate.
such that perturbation theory is valid, exhibit a Gaussian fi- Recently Rossini, Benenti, and Cas@RBC) [20] re-
delity decay[1,3]. Stronger perturbations, in the Fermi ported numerical evidence of exponential fidelity decay in
golden rule(FGR) regime, exhibit exponential fidelity decay nonchaotic systems due to “quantum” perturbatitthsugh
with a rate determined by the strength and type of perturbathe rate may not be that expected for chaotic syste@san-
tion [3—6]. The rate of this exponential generally increases asum perturbations are not tied to a classical system parameter
the square of the perturbation streng®) and may saturate and are applied multiple times during each map iteration, i.e.,
at the underlying classical systems’ Lyapunov expofié/@  after each basic gate in the simulation of the dynamics on a
or the bandwidth of the Hamiltoniai3]. quantum computer. The cause of this behavior, RBC explain,
The fidelity decay of classical-like coherent states foris the nonlocality of such errors which allow for direct trans-
quantum analogs of nonchaotic systefi@s9,10 can be fer of probability over a large distance in phase space. Mean-
Gaussiar{4,11], faster than the chaotic system exponential,ing, the LDOS has significant amplitude even for latgeé.
or power law[12] depending on the initial staf®], and the  This result is of particular importance for suggested exploi-
effect of the perturbation on the classical orbits on which theations of the slower exponential decay to stabilize quantum
state is centerefll3,14]. The fidelity decay of systen{d5],  computation[21,29, and for fidelity decay studies on a
states[16], and perturbation strengttig7] at regime edges quantum comput€i6,20,23,24.

have also been explored. In this paper we numerically demonstrate that perturba-
The quantum fidelity decay of an initial std&) is tions not tied to a classical parameter of nonchaotic systems
can exhibit exponential decay even when applied after every

F(t) = K| U™ U g2, (1) map iteration, as generally done in fidelity decay studies. We

choose this perturbation application scheme becddse
there is no unique gate sequence for implementing an opera-
tor, (2) some of the operators we discuss cannot be imple-
mented efficiently on a quantum computer, d8d perhaps
most importantly, when the perturbation is applied at numer-
ous points during the map iteration the composite effect on
the map is likely random. Thus, the exponential decay is due
to the basis of the perturbation as found @. By applying
the perturbation every map iteration we show that the decay
* Author to whom correspondence should be addressed. Electronteehavior is due to a different phenomenon: symmetries in the
address: weinstei@dave.nrl.navy.mil system Hamiltonian. When no symmetries are present the
"Electronic address: hellberg@dave.nrl.navy.mil perturbation is local, the LDOS is Gaussian, and the fidelity

whereU is the unperturbed evolutiomp=Ue“fV is the per-
turbed evolutiong is the perturbation strength, is the per-
turbation Hamiltonian, andis the number of map iterations.
For chaotic systems, random matrix the0RMT) gives the
FGR exponential fidelity decay raiéas a function of and
the perturbation Hamiltonian eigenvalugs| 6]
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decay is faster than exponential even when the perturbation
is not tied to a classical system parameter. We emphasize the
counterintuitive nature of this claim, namely, by addsyn-
metry, the system’s fidelity behavior behaves in a moha-
otic fashion.

Our numerical study centers around the quantum kicked
top (QKT), a system used in many studies of quantum chaos
in general[25] and fidelity decay in particuldr2—4,6. The
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QKT [26] Floquet operator is \
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whereJ is the angular momentum of the top addre irre- N
ducible angular momentum operators. The Hilbert space di- 0 50
mension of the top i8l=2J+1 and the representation is such
thatJ, is diagonal. The chaoticity of the QKT depends on the
kick strengthk. The QKT is nonchaotic fok=<2.7, has cha-
otic and nonchaotic regions for 23k=<4.2, and is fully
chaotic fork=4.2[3]. The QKT has different symmetry sec-
tors based on its angular momentum. ForJalhe QKT has
conserved parity with respect to 180° rotations aboutor
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FIG. 1. (Color online Fidelity decay for QKT withJ=255.5,
and k=1 (O), 3 (O), 5 (¢), and 7(A) for the collective bitz
rotation withe=0.2. Even the nonchaotic QKT decays are exponen-
tial though they do not follow the random matrix theory rate given
in Eq. (2) (dashed ling The inset shows the fidelity decay flr
=1 (X) and 10(O) for perturbation strengthe=0.2, 0.3, and 0.6
evenJ the subspace even with respectythas conserved (iop to botton. As the perturbation strengthens, the invariant sub-
parity with respect to 180° rotations about spaces are overwhelmed and the system behaves as if there were no
In his original fidelity decay studies, Peres was careful tosymmetries. Hence, the nonchaotic QKT reverts to nonexponential
account for the symmetries of the QKZ] by block diago- fidelity decay. RMT predictions are also shoddashed lines Al
nalizing and performing simulations using only one block.plots are averaged over 100 random initial states.
While some later authors have done the sddhe others . , ) )
[3,14] have used the complete QKT without apparent dis-"° known way of efficiently implementing such matrices on
crepancies. Here we show that the presence of symmetries fhduantum computer. For our purposes matrices Withl

a quantum system can dramatically change the fidelity decal rovide models of nonchaqtlc operators that have no classi-
behavior al analog. Any perturbation of these operators must be

We choose a quantum perturbation relevant to quantur{;\]uamlm.1 asa priori, the operators have no qlassical param-

control studies eters. Flgure_2 demonstrates thaft the 1 fidelity d_ecay for
the perturbation of Eq4), €=0.3, isnot exponential.
(4) An explanation for the above discrepancies is the pres-
ence of symmetries. Nonchaotic systems containing symme-

wheren, is the number of qubits and, is the Pauli spin tries, and thus invariant subspaces, exhibit chaoslike expo-
matrix. This corresponds to a collective qubit rotation aboutnential fidelity decay, while nonchaotic systems without
the z axis by anglee and is a model of coherent far-field symmetries exhibit faster-than-exponential decay. This result
errors[27]. We apply the perturbation only after a completeis surprising.A priori we would expect systems with less
map iteration. symmetries to be more chaoslike. Below we provide further

Figure 1 shows the fidelity decay of the QKT for different numerical evidence demonstrating this behavior: one QKT
values ofk with the above perturbatiorg=0.2, and random symmetry sector and interpolating ensemble matrices with
initial states. Values ok are shown for regular, mixed, and added symmetries.
chaotic QKT but the fidelity decay is always exponential. Following Pere$2] we block diagonalize an evehQKT
This tells us that the fidelity decay due to a quantum error iand keep one block as the system. Using the perturbation of
exponential independent of the chaoticity of the sysean  Eq. (4), the fidelity decay for the block is faster than expo-
when applied after every map iteration. Here there is no connential for nonchaotic values &fand exponential for chaotic
cern that the system has random eigenvectors in the basis walues ofk, as shown in Fig. 3. This is in contrast to the
the perturbation since the perturbation is diagofaald in  exponential decay seen for &livalues when using the com-
this basis the regular QKT eigenvectors are not random plete QKT. Thus, byemovingthe symmetry, the system de-
Initial angular momentum coherent states for the QKT andsiates from the expected RMT behavior. In addition, for cha-
random states for the quantum Harper's map give similaotic values ofk, the exponential decay rate is not the one
results. given by Eq.(2), again in contrast to the full QKT where the

Exponential fidelity decay due to quantum perturbationsdecay rate was exact.
is not universal. We demonstrate this via unitary matrices of We expect the fidelity decay of systems with symmetries
the interpolating ensembl¢&8], which are intermediate be- and extremely strong perturbations, such that the symmetries
tween randomg=1, and diagonal with Poissonian distrib- are overwhelmed, to revert to nonexponential. This occurs in
uted eigenangle$=0. Matrix statistics for these ensembles the full QKT with €=0.6 (Fig. 1 inse}.
transition smoothly between the two limit&8,29. There is A symmetry can be added to interpolating ensemble ma-

Up =179, exp(- iec)/2),
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FI_G. 2. (Color onling Fidelity decay for matrices of the inter- FIG. 3. (Color online Fidelity decay for the QKT subspace
polating ensembl&=1 (), 0.98(¢), 0.94(LJ), 0.9 (+), 0.8(0),  even with respect to 180° rotations abguand odd with respect to
0.7 (X) for the collective qubitz rotation withN=128 ande=0.3.  180° rotations about, J=1024,N=512,k=1 (O), 3 (0), 5 (0),
The fidelity for < 0.7 matrices has the same behavior as those withy g 7(2) for the collective bitz rotation with e=0.2. Though the
6=0.7. For6+ 1 the fidelity decay is faster than exponential even perturbation is not attached to a classical parameter the fidelity de-
though the perturbation is not tied to a classical param@t®  cay for nonchaotic QKTs are nonexponential. The chaotic QKT
matrices have no classical analpgss 5— 1 the matrices bepome exponential decay does not follow the RMT rales 0.45 (dashed
random and the decay rate approaches the RMT(dztshed line e, actual rate i4"~0.405. The inset shows the fidelity decay for
All plots average over 10 operators with 100 random initial state§ne same parameters with the perturbation transformed into a ran-

per operator. The lower inset shows the local density of states for agom pasis. The decay is exponential for all valuek af the RMT
average of 5=1, 0.9, 0.8, 0.7 operators, compared to the Lorent-;5te

zian expected for chaotic systenfsolid line), and a Gaussian

(dashed ling The Gaussian-like LDOS for nonchaotic systems

shows that the perturbation is localized. The upper inset shows the

fidelity decay fore=0.3,N=256 block diagonal operators in which nonchaotic systems, even ones not attached to a classical

the twoN/2=128 blocks are different interpolating ensemble ma-system parameter, tend to be local. However, when the per-

trices of the sames. Changing bases and having the perturbationturbation breaks a symmetry there are long-range effects

break the symmetry of the operator, brings the fidelity decay closeimilar to those of chaotic systems. This process is different

to the RMT predictiondashed ling As & is decreased, the fidelity than that described in Rg6] where the exponential decay is

decay becomes slightly slower than exponential. linked to the RMT statistics of the system eigenvectors in the
perturbation basis.

Coherent far-field errors, such as Hd), are the subject
trices by using two matrices of equaland Hilbert dimen- of many theoretical and experimental quantum error correc-
sionN/2 as diagonal blocks of B X N operator. The pertur- tion codes and encoding®7,31. Our results suggest that
bation of Eq.(4) does not cause mixing between the blocksthis error may cause only exponential fidelity decay even
so we transform into a new basis. The first transformation wevhen a quantum computer is simulating nonchaotic evolu-
apply takes the perturbation to a collective qubitotation,  tion. This provides a way of protecting against these noise
o, replaceso, in Eq. (4). With this the fidelity decay is operators—add a symmetry to the system. Such symmetries
exponential at the RMT rate even for lof\blocks. However, already exist in encoded qubits, where specific states of a
this exponential decay is not due to the broken symmetrymultiqubit system are used as a logical qubit. For example,
Rather, the matrices of the interpolating ensembles, thouglogical qubits in quantum dots that are encoded such that the
not random with respect to the, collective qubit perturba- exchange coupling is universgd2,33 are symmetric with
tion, are random in the eigenbasis of iagcollective qubit  respect to theS, angular momentum operator. In general, by
perturbation. As explained i6] (and shown in Fig. 3 for the enforcing all reasonable decoherence mechanisms to break a
QKT without symmetry, when the system is random in the symmetry, decoherence may cause an exponential, rather
perturbation basis, the fidelity decay is exponential. than Gaussian decay.

A transformation that does not induce randomness in a Exponential decay occurs in many physical systems not
block diagonal operator with interpolating ensemble blocksyenerally regarded as chaotic, including relaxation phenom-
is a modified version of the transformation matrix to block ena and Fermi golden rule calculations. We suggest, without
diagonalize the eved QKT [2,30]. With this transformation proof, that symmetry may add insight into the preponderance
the fidelity decay is exponential fof# 1 blocks and be- of exponential decay laws in nature. Lack of symmetry may
comes slightly slower than exponential for lower valuessof explain why some systems, such as magnetic relaxation in
(Fig. 2. This provides a creative way of protecting againstsingle molecular magne{84], decay nonexponentially.
these noise operators: add a symmetry to the system. In conclusion, we have studied the effect of symmetries

The above simulations demonstrate that perturbations adn fidelity decay behavior. When the perturbation is not tied
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to a classical parameter of the system, as would likely arisprocesses to affect the system with the less-damaging expo-
in quantum computers, the presence or lack of symmetriesential decay.

strongly affects the fidelity decay behavior. Surprisingly, the

presence of symmetries forces the system into a more cha- The authors acknowledge support from the DARPA
oslike behavior, exponential decay, while lack of symmetriesQuIST (MIPR 02 N699-00 program. Y.S.W. acknowledges
causes deviations from RMT predictions and a faster-thansupport of the National Research Council through the Naval
exponential decay. Building symmetries into quantum com-Research Laboratory. Computations were performed at the
puters, as done when encoded qubits, can cause decoher&8C DoD Major Shared Resource Center.

[1] A. Peres, Phys. Rev. 80, 1610(1984. [19] E. P. Wigner, Ann. Math62, 548(1955; 65, 203(1957); Y.
[2] A. Peres, inQuantum Chagsedited by H. A. Cerdeira, R. V. Fyodorov, O. A. Chubykalo, F. M. Izrailev, and G. Casati,
Ramaswamy, M. C. Gutzwiller, and G. Cas@tiorld Scien- Phys. Rev. Lett.76, 1603 (1996; Ph. Jacquod and D. L.
tific, Singapore, 1991 p. 73; A. PeresQuantum Theory: Con- Shepelyanskyipid. 75, 3501(1995.
cepts and Method&luwer Academic, Dordrecht, 1995 [20] D. Rossini, G. Benenti, and G. Casati, Phys. Rev.78
[3] Ph. Jacquod, P. G. Silvestrov, and C. W. J. Beenakker, Phys. 056216(2004).
Rev. E 64, 055203R), (2001). [21] T. Prosen and M. Znidaric, J. Phys. 24, L681 (2001).

[4] T. Prosen and M. Znidaric, Z. Phys. 85, 1455(2002. [22] K. M. Frahm, R. Fleckinger, and D. L. Shepelyansky, Eur.
[5] Ph. Jacquod, I. Adagideli, and C. W. J. Beenakker, Phys. Rev. Phys. J. D29, 139 (2004; O. Kern, G. Alber, and D. L.

Lett. 89, 154103(2002. o
; . Shepelyanskyipid. 32, 153 (2005.
[6] J. Emerson, Y. S. Weinstein, S. Lloyd, and D. G. Cory, Phys.[23] D. Poulin, R. Blume-Kohout, R. Laflamme, and H. Ollivier,

Rev. Lett. 89, 284102(2002.
[7] R. A. Jalabert and H. M. Pastawski, Phys. Rev. L88&, 2490 Phys. Rev. Lett.92, 177906(2004.

(2001, [24] Y. S. Weinstein, S. Lloyd, J. Emerson, and D. G. Cory, Phys.
[8] F. M. Cucchiettiet al, Phys. Rev. E65, 046209(2002). Rev. Lett. 89, 157902(2002. _
[9] T. Prosen and M. Znidaric, New J. Phys, 109 (2003. [25] F. Haake Quantum Signatures of Cha¢Springer, New York,
[10] R. Sankaranarayanan and A. Lakshminarayan, Phys. Rev. E 199D
68, 036216(2003. [26] F. Haake, M. Kus, and R. Scharf, Z. Phys. B: Condens. Matter
[11] T. Prosen, Phys. Rev. B5, 036208(2002. 65, 381 (1987.
[12] P. Jacquod, I. Adagideli, and C. W. J. Beenakker, Europhys[27] L. Viola et al, Science293 2059(2001).
Lett. 61, 729(2003. [28] K. Zyczkowski and M. Kus, Phys. Rev. B3, 319(1996.
[13] G. Benenti, G. Casati, and G. Veble, Phys. Re\6& 036212  [29] Y. S. Weinstein and C. S. Hellberg, e-print quant-ph/0405053.
(2003. [30] The evend QKT transformation matrix has odd Hilbert space
[14] Y. S. Weinstein and C. S. Hellberg, Phys. Rev7E 016209 dimension 2+1. To makeN even we remove the eigenvector
(2005. that is all zeros except a one at tiN¢2+1 element. The
[15] W. G. Wang, G. Casati, and B. Li, Phys. Rev68, 025201R) N/2+1 element in all other eigenvectors is zero and is re-
(2004). moved to give them a length .
[16] Y. S. Weinstein, S. Lloyd, and C. Tsallis, Phys. Rev. L&8, [31] P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White,
214101(2002. Science 290, 498 (2000; D. Kielpinski et al, Science 291,
[17] N. R. Cerruti and S. Tomsovic, Phys. Rev. LeB8, 054103 1013(200)).
(2002; J. Phys. A36, 3451(2003; W. Wang and B. Li, Phys. [32] D. P. DiVincenzoet al,, Nature(London 408 339 (2000.
Rev. E 66, 056208(2002. [33] Y. S. Weinstein and C. S. Hellberg, e-print quant-ph/0408037.
[18] D. A. Wisniacki and D. Cohen, Phys. Rev. B6, 046209 [34] L. Thomas, A. Caneschi, and B. Barbara, Phys. Rev. 188f.
(2002. 2398(1999.

035203-4



