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We explore the effect of a system’s symmetries on fidelity decay behavior. Chaoslike exponential fidelity
decay behavior occurs in nonchaotic systems when the system possesses symmetries and the applied pertur-
bation is not tied to a classical parameter. Similar systems without symmetries exhibit faster-than-exponential
decay under the same type of perturbation. This counterintuitive result, that extra symmetries cause the system
to behave in a chaotic fashion, may have important ramifications for quantum-error correction.
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Fidelity decay as a possible signature of quantum chaos
was reported by Peresf1,2g while exploring irreversibility in
quantum mechanical systems. Though the overlap between
two initial states undergoing equivalent evolution remains
constant with time, it decreases with time if the Hamiltonian
affecting one of the systems is sightly perturbed. The behav-
ior of the decrease in overlap, or fidelity, depends on whether
the evolution is the quantum analog of a chaotic or noncha-
otic classical system.

Further explorations have distinguished realms of fidelity
decay behavior based on the chaoticity of the corresponding
classical system, perturbation strength and type, and the ini-
tial system state. Weak perturbations of the Hamiltonian,
such that perturbation theory is valid, exhibit a Gaussian fi-
delity decay f1,3g. Stronger perturbations, in the Fermi
golden rulesFGRd regime, exhibit exponential fidelity decay
with a rate determined by the strength and type of perturba-
tion f3–6g. The rate of this exponential generally increases as
the square of the perturbation strengthf3g and may saturate
at the underlying classical systems’ Lyapunov exponentf7,8g
or the bandwidth of the Hamiltonianf3g.

The fidelity decay of classical-like coherent states for
quantum analogs of nonchaotic systemsf4,9,10g can be
Gaussianf4,11g, faster than the chaotic system exponential,
or power lawf12g depending on the initial statef9g, and the
effect of the perturbation on the classical orbits on which the
state is centeredf13,14g. The fidelity decay of systemsf15g,
statesf16g, and perturbation strengthsf17g at regime edges
have also been explored.

The quantum fidelity decay of an initial stateucil is

Fstd = ukciuU−tUp
t ucilu2, s1d

whereU is the unperturbed evolution,Up=Ue−ieV is the per-
turbed evolution,e is the perturbation strength,V is the per-
turbation Hamiltonian, andt is the number of map iterations.
For chaotic systems, random matrix theorysRMTd gives the
FGR exponential fidelity decay rateG as a function ofe and
the perturbation Hamiltonian eigenvaluesli f6g

G = e2l2, s2d

wherel2=N−1oi
Nli

2 andN is the Hilbert space dimension.
Fidelity decay is related by a Fourier transform to the

local density of statessLDOSd f3,18g hsDfd= ukvmuvn8lu
2,

where Df=fm−fn8, is the difference between unperturbed
and perturbed eigenangles given by the eigenvalue equa-
tions:Uuvml=exps−ifmduvml andUpuvn8l=exps−ifn8duvn8l. The
LDOS provides a measure of how local is the perturbation.
For complex systems the LDOS is typically Lorentzianf19g,
the perturbation transfers probability to the far reaches of the
system basis. The Lorentzian widthG gives the exponential
chaotic fidelity decay rate.

Recently Rossini, Benenti, and CasatisRBCd f20g re-
ported numerical evidence of exponential fidelity decay in
nonchaotic systems due to “quantum” perturbationssthough
the rate may not be that expected for chaotic systemsd. Quan-
tum perturbations are not tied to a classical system parameter
and are applied multiple times during each map iteration, i.e.,
after each basic gate in the simulation of the dynamics on a
quantum computer. The cause of this behavior, RBC explain,
is the nonlocality of such errors which allow for direct trans-
fer of probability over a large distance in phase space. Mean-
ing, the LDOS has significant amplitude even for largeDf.
This result is of particular importance for suggested exploi-
tations of the slower exponential decay to stabilize quantum
computation f21,22g, and for fidelity decay studies on a
quantum computerf6,20,23,24g.

In this paper we numerically demonstrate that perturba-
tions not tied to a classical parameter of nonchaotic systems
can exhibit exponential decay even when applied after every
map iteration, as generally done in fidelity decay studies. We
choose this perturbation application scheme becauses1d
there is no unique gate sequence for implementing an opera-
tor, s2d some of the operators we discuss cannot be imple-
mented efficiently on a quantum computer, ands3d perhaps
most importantly, when the perturbation is applied at numer-
ous points during the map iteration the composite effect on
the map is likely random. Thus, the exponential decay is due
to the basis of the perturbation as found inf6g. By applying
the perturbation every map iteration we show that the decay
behavior is due to a different phenomenon: symmetries in the
system Hamiltonian. When no symmetries are present the
perturbation is local, the LDOS is Gaussian, and the fidelity
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decay is faster than exponential even when the perturbation
is not tied to a classical system parameter. We emphasize the
counterintuitive nature of this claim, namely, by addingsym-
metry, the system’s fidelity behavior behaves in a morecha-
otic fashion.

Our numerical study centers around the quantum kicked
top sQKTd, a system used in many studies of quantum chaos
in generalf25g and fidelity decay in particularf2–4,6g. The
QKT f26g Floquet operator is

UQKT = e−ipJy/2e−ikJz
2/2J, s3d

whereJ is the angular momentum of the top andJW are irre-
ducible angular momentum operators. The Hilbert space di-
mension of the top isN=2J+1 and the representation is such
thatJz is diagonal. The chaoticity of the QKT depends on the
kick strength,k. The QKT is nonchaotic fork&2.7, has cha-
otic and nonchaotic regions for 2.7&k&4.2, and is fully
chaotic fork*4.2 f3g. The QKT has different symmetry sec-
tors based on its angular momentum. For allJ the QKT has
conserved parity with respect to 180° rotations abouty. For
even J the subspace even with respect toy has conserved
parity with respect to 180° rotations aboutx.

In his original fidelity decay studies, Peres was careful to
account for the symmetries of the QKTf2g by block diago-
nalizing and performing simulations using only one block.
While some later authors have done the samef4g, others
f3,14g have used the complete QKT without apparent dis-
crepancies. Here we show that the presence of symmetries in
a quantum system can dramatically change the fidelity decay
behavior.

We choose a quantum perturbation relevant to quantum
control studies

Up = P j=1
nq exps− iesz

j /2d, s4d

where nq is the number of qubits andsz is the Pauli spin
matrix. This corresponds to a collective qubit rotation about
the z axis by anglee and is a model of coherent far-field
errorsf27g. We apply the perturbation only after a complete
map iteration.

Figure 1 shows the fidelity decay of the QKT for different
values ofk with the above perturbation,e=0.2, and random
initial states. Values ofk are shown for regular, mixed, and
chaotic QKT but the fidelity decay is always exponential.
This tells us that the fidelity decay due to a quantum error is
exponential independent of the chaoticity of the systemeven
when applied after every map iteration. Here there is no con-
cern that the system has random eigenvectors in the basis of
the perturbation since the perturbation is diagonalsand in
this basis the regular QKT eigenvectors are not randomd.
Initial angular momentum coherent states for the QKT and
random states for the quantum Harper’s map give similar
results.

Exponential fidelity decay due to quantum perturbations
is not universal. We demonstrate this via unitary matrices of
the interpolating ensemblesf28g, which are intermediate be-
tween random,d=1, and diagonal with Poissonian distrib-
uted eigenanglesd=0. Matrix statistics for these ensembles
transition smoothly between the two limitsf28,29g. There is

no known way of efficiently implementing such matrices on
a quantum computer. For our purposes matrices withd,1
provide models of nonchaotic operators that have no classi-
cal analog. Any perturbation of these operators must be
quantum as,a priori, the operators have no classical param-
eters. Figure 2 demonstrates that thedÞ1 fidelity decay for
the perturbation of Eq.s4d, e=0.3, isnot exponential.

An explanation for the above discrepancies is the pres-
ence of symmetries. Nonchaotic systems containing symme-
tries, and thus invariant subspaces, exhibit chaoslike expo-
nential fidelity decay, while nonchaotic systems without
symmetries exhibit faster-than-exponential decay. This result
is surprising.A priori we would expect systems with less
symmetries to be more chaoslike. Below we provide further
numerical evidence demonstrating this behavior: one QKT
symmetry sector and interpolating ensemble matrices with
added symmetries.

Following Peresf2g we block diagonalize an evenJ QKT
and keep one block as the system. Using the perturbation of
Eq. s4d, the fidelity decay for the block is faster than expo-
nential for nonchaotic values ofk and exponential for chaotic
values ofk, as shown in Fig. 3. This is in contrast to the
exponential decay seen for allk values when using the com-
plete QKT. Thus, byremovingthe symmetry, the system de-
viates from the expected RMT behavior. In addition, for cha-
otic values ofk, the exponential decay rate is not the one
given by Eq.s2d, again in contrast to the full QKT where the
decay rate was exact.

We expect the fidelity decay of systems with symmetries
and extremely strong perturbations, such that the symmetries
are overwhelmed, to revert to nonexponential. This occurs in
the full QKT with e=0.6 sFig. 1 insetd.

A symmetry can be added to interpolating ensemble ma-

FIG. 1. sColor onlined Fidelity decay for QKT withJ=255.5,
and k=1 ssd, 3 shd, 5 sLd, and 7 snd for the collective bitz
rotation withe=0.2. Even the nonchaotic QKT decays are exponen-
tial though they do not follow the random matrix theory rate given
in Eq. s2d sdashed lined. The inset shows the fidelity decay fork
=1 s3d and 10ssd for perturbation strengthse=0.2, 0.3, and 0.6
stop to bottomd. As the perturbation strengthens, the invariant sub-
spaces are overwhelmed and the system behaves as if there were no
symmetries. Hence, the nonchaotic QKT reverts to nonexponential
fidelity decay. RMT predictions are also shownsdashed linesd. All
plots are averaged over 100 random initial states.
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trices by using two matrices of equald and Hilbert dimen-
sionN/2 as diagonal blocks of aN3N operator. The pertur-
bation of Eq.s4d does not cause mixing between the blocks
so we transform into a new basis. The first transformation we
apply takes the perturbation to a collective qubitx rotation,
sx replacessz in Eq. s4d. With this the fidelity decay is
exponential at the RMT rate even for lowd blocks. However,
this exponential decay is not due to the broken symmetry.
Rather, the matrices of the interpolating ensembles, though
not random with respect to thesz collective qubit perturba-
tion, are random in the eigenbasis of thesx collective qubit
perturbation. As explained inf6g sand shown in Fig. 3 for the
QKT without symmetryd, when the system is random in the
perturbation basis, the fidelity decay is exponential.

A transformation that does not induce randomness in a
block diagonal operator with interpolating ensemble blocks
is a modified version of the transformation matrix to block
diagonalize the evenJ QKT f2,30g. With this transformation
the fidelity decay is exponential fordÞ1 blocks and be-
comes slightly slower than exponential for lower values ofd
sFig. 2d. This provides a creative way of protecting against
these noise operators: add a symmetry to the system.

The above simulations demonstrate that perturbations of

nonchaotic systems, even ones not attached to a classical
system parameter, tend to be local. However, when the per-
turbation breaks a symmetry there are long-range effects
similar to those of chaotic systems. This process is different
than that described in Ref.f6g where the exponential decay is
linked to the RMT statistics of the system eigenvectors in the
perturbation basis.

Coherent far-field errors, such as Eq.s4d, are the subject
of many theoretical and experimental quantum error correc-
tion codes and encodingsf27,31g. Our results suggest that
this error may cause only exponential fidelity decay even
when a quantum computer is simulating nonchaotic evolu-
tion. This provides a way of protecting against these noise
operators—add a symmetry to the system. Such symmetries
already exist in encoded qubits, where specific states of a
multiqubit system are used as a logical qubit. For example,
logical qubits in quantum dots that are encoded such that the
exchange coupling is universalf32,33g are symmetric with
respect to theSz angular momentum operator. In general, by
enforcing all reasonable decoherence mechanisms to break a
symmetry, decoherence may cause an exponential, rather
than Gaussian decay.

Exponential decay occurs in many physical systems not
generally regarded as chaotic, including relaxation phenom-
ena and Fermi golden rule calculations. We suggest, without
proof, that symmetry may add insight into the preponderance
of exponential decay laws in nature. Lack of symmetry may
explain why some systems, such as magnetic relaxation in
single molecular magnetsf34g, decay nonexponentially.

In conclusion, we have studied the effect of symmetries
on fidelity decay behavior. When the perturbation is not tied

FIG. 2. sColor onlined Fidelity decay for matrices of the inter-
polating ensembled=1 s·d, 0.98 sLd, 0.94 shd, 0.9 s1d, 0.8 ssd,
0.7 s3d for the collective qubitz rotation withN=128 ande=0.3.
The fidelity ford,0.7 matrices has the same behavior as those with
d=0.7. FordÞ1 the fidelity decay is faster than exponential even
though the perturbation is not tied to a classical parametersthe
matrices have no classical analogsd. As d→1 the matrices become
random and the decay rate approaches the RMT ratesdashed lined.
All plots average over 10 operators with 100 random initial states
per operator. The lower inset shows the local density of states for an
average of 50d=1, 0.9, 0.8, 0.7 operators, compared to the Lorent-
zian expected for chaotic systemsssolid lined, and a Gaussian
sdashed lined. The Gaussian-like LDOS for nonchaotic systems
shows that the perturbation is localized. The upper inset shows the
fidelity decay fore=0.3,N=256 block diagonal operators in which
the two N/2=128 blocks are different interpolating ensemble ma-
trices of the samed. Changing bases and having the perturbation
break the symmetry of the operator, brings the fidelity decay close
to the RMT predictionsdashed lined. As d is decreased, the fidelity
decay becomes slightly slower than exponential.

FIG. 3. sColor onlined Fidelity decay for the QKT subspace
even with respect to 180° rotations abouty and odd with respect to
180° rotations aboutx, J=1024,N=512, k=1 ssd, 3 shd, 5 sLd,
and 7snd for the collective bitz rotation withe=0.2. Though the
perturbation is not attached to a classical parameter the fidelity de-
cay for nonchaotic QKTs are nonexponential. The chaotic QKT
exponential decay does not follow the RMT rate,G=0.45 sdashed
line, actual rate isG.0.405d. The inset shows the fidelity decay for
the same parameters with the perturbation transformed into a ran-
dom basis. The decay is exponential for all values ofk at the RMT
rate.
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to a classical parameter of the system, as would likely arise
in quantum computers, the presence or lack of symmetries
strongly affects the fidelity decay behavior. Surprisingly, the
presence of symmetries forces the system into a more cha-
oslike behavior, exponential decay, while lack of symmetries
causes deviations from RMT predictions and a faster-than-
exponential decay. Building symmetries into quantum com-
puters, as done when encoded qubits, can cause decoherent

processes to affect the system with the less-damaging expo-
nential decay.
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